Next Frontier Technologies: How to Scale SDG Monitoring

Dean Angelides Corporate Director, Esri

Vision

GIS

Is Enabling a Sustainable World

Our World Needs a Nervous System

An Intelligent and Responsive Platform

Creating More UnderstandingCollaboration andAction

. . Geography Is Essential

Your Work Is Already Creating Geospatial Infrastructure

Intelligent and Responsive . . .

ŏ

Integrating All Sources of Data . . .

Creating Digital Nervous Systems for Your Organizations and Countries

Connecting Everything

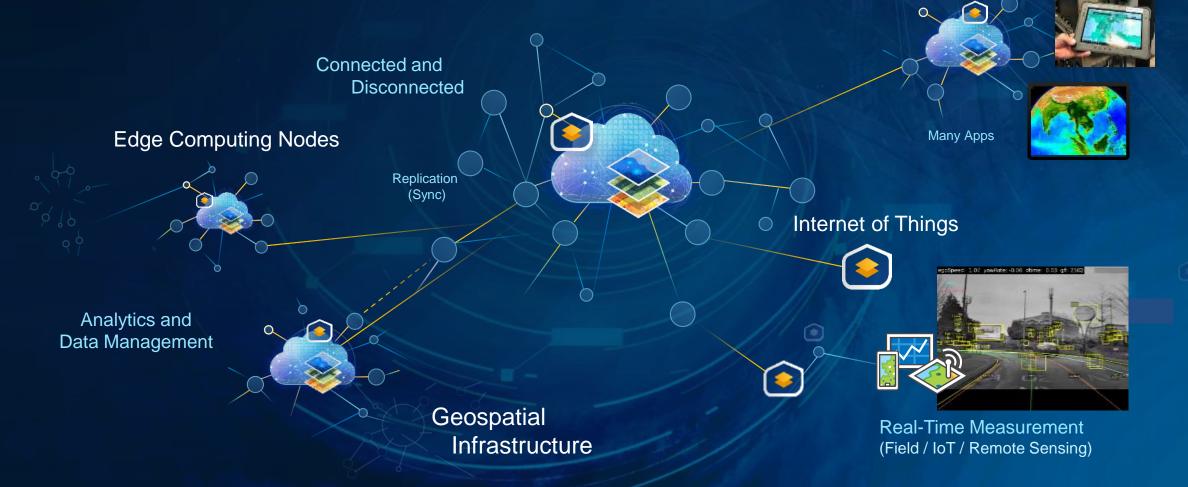
Applying The Science of Where . . .

Creating a Global Nervous System

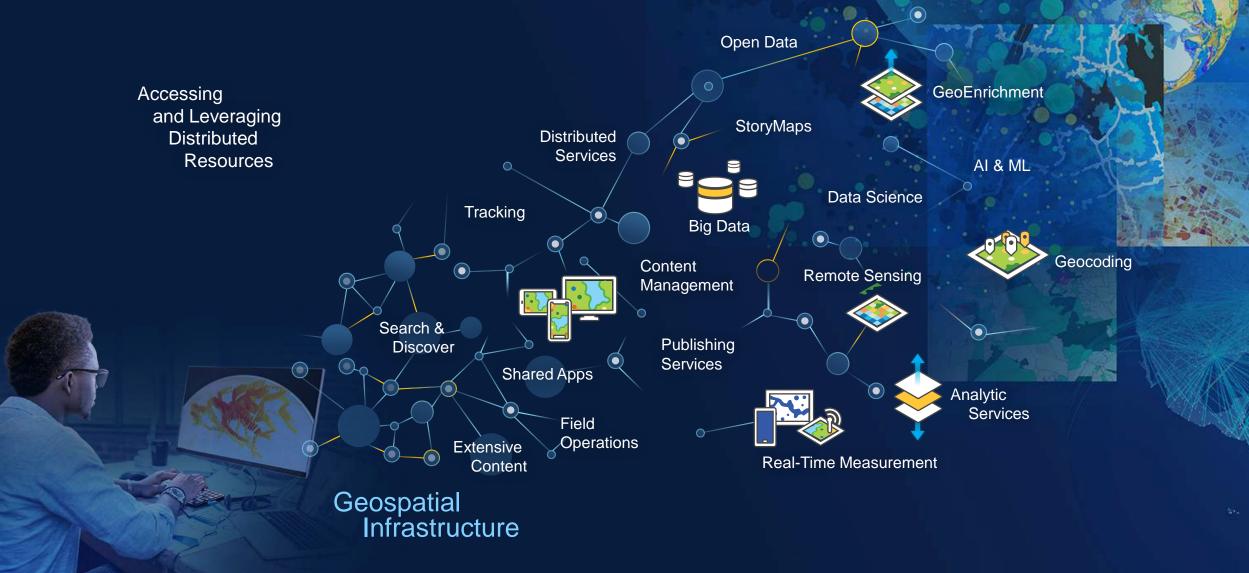
A System for Understanding . . . And Collaborative Action

Geospatial Infrastructure Supports Individuals . . . Distributed ... And Organizations of All Sizes . . . And Interconnected Communities Engaging Organizations Everyone **GIS at Scale** Departments Teams Individuals Sharing and Collaboration

Integrating Open Science, AI and Machine Learning


Revolutionizing Spatial Analysis and Data Science

Extending GIS to the Edge


Including and Integrating . . . Challenged Network Environments

Edge Devices

Supporting GIS Workflows in All Environments

Supporting and Integrating Advanced Technologies

3D Visualization

New and Improved

- 3D Smart Mapping
- Mobile
- Point Clouds
- BIM Support
- Symbology

Data Visualization

Symbology

Effects

Power Lines

Extrusion

Augmented Reality / VR

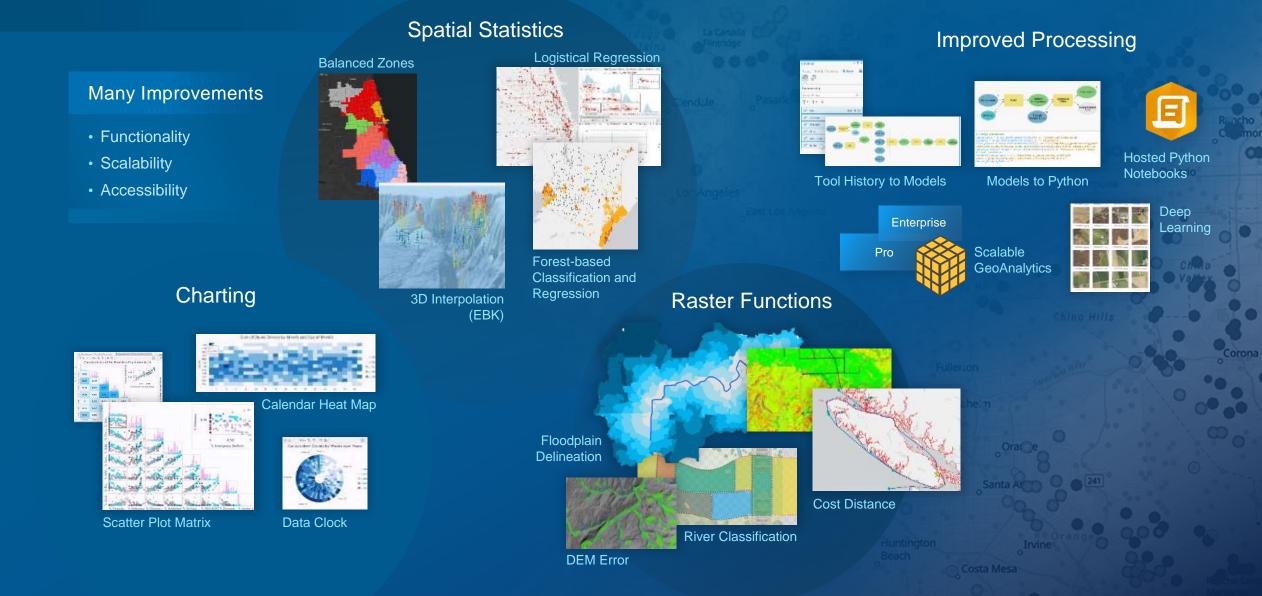
Mobile

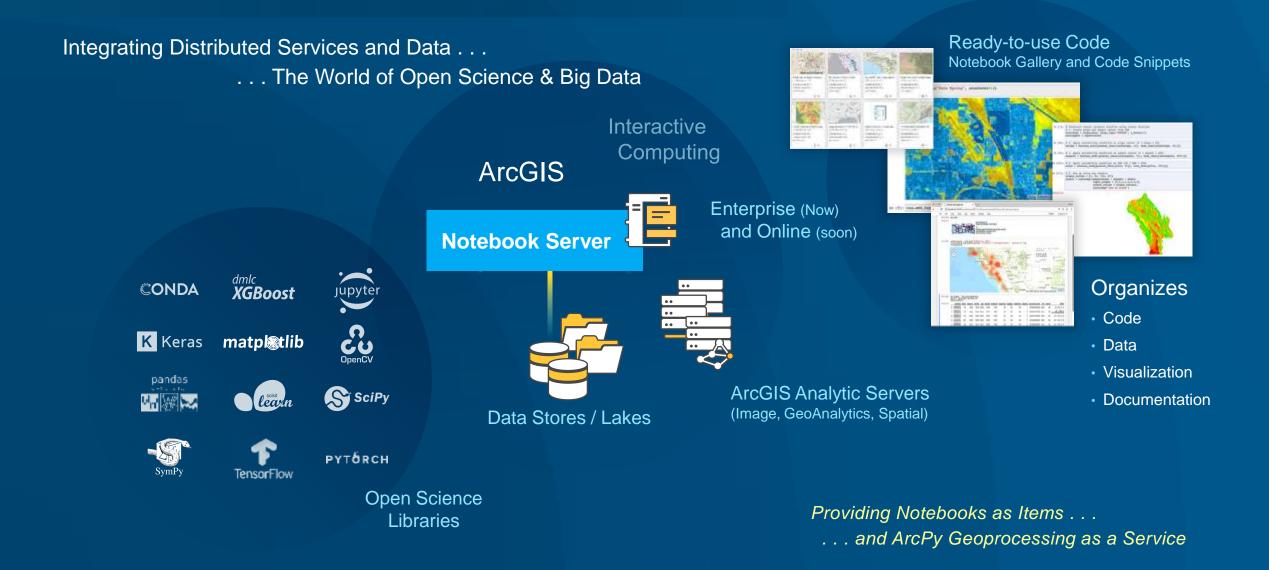
BIM as Scene Layers

Mobile Scene Packages

BIM Integration

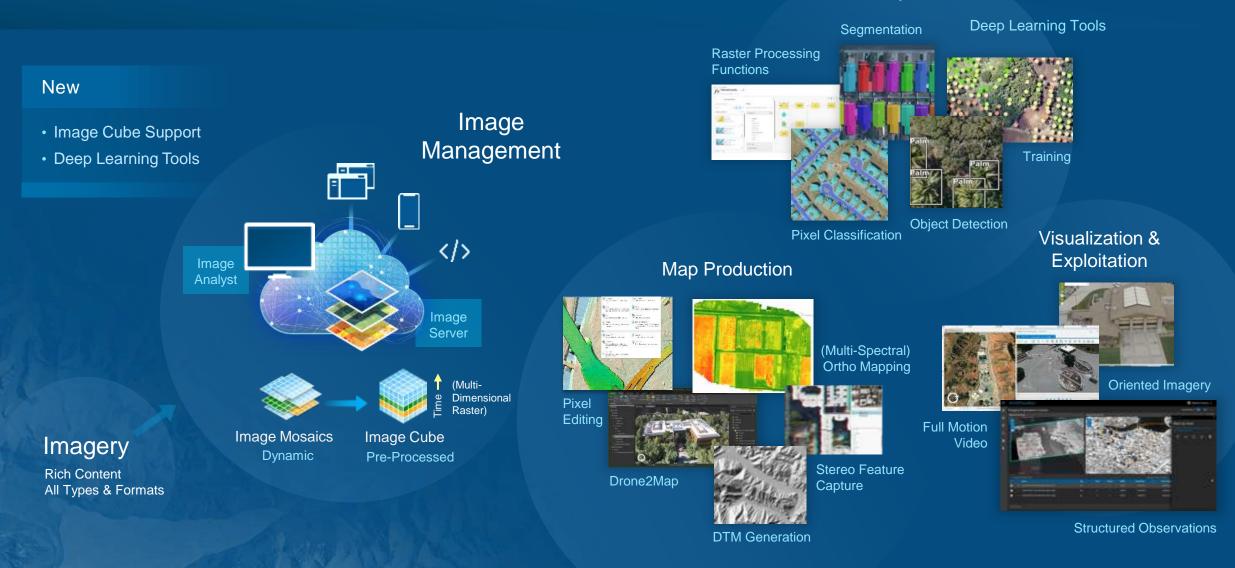
City Modeling


Underground


Field Operations Location-Enabling All Aspects of Field Work

Spatial Analysis and Data Science

Hosted Python Notebooks For Integration, Modeling and Automation



AI, ML and Deep Learning Integrating Open Science

Magery A Comprehensive System for Imagery and Remote Sensing

Real-Time Analytics Integrating Sensor Networks and IoT

Supporting High-Velocity Data Streams Tracking, Monitoring and Alerting

Improved

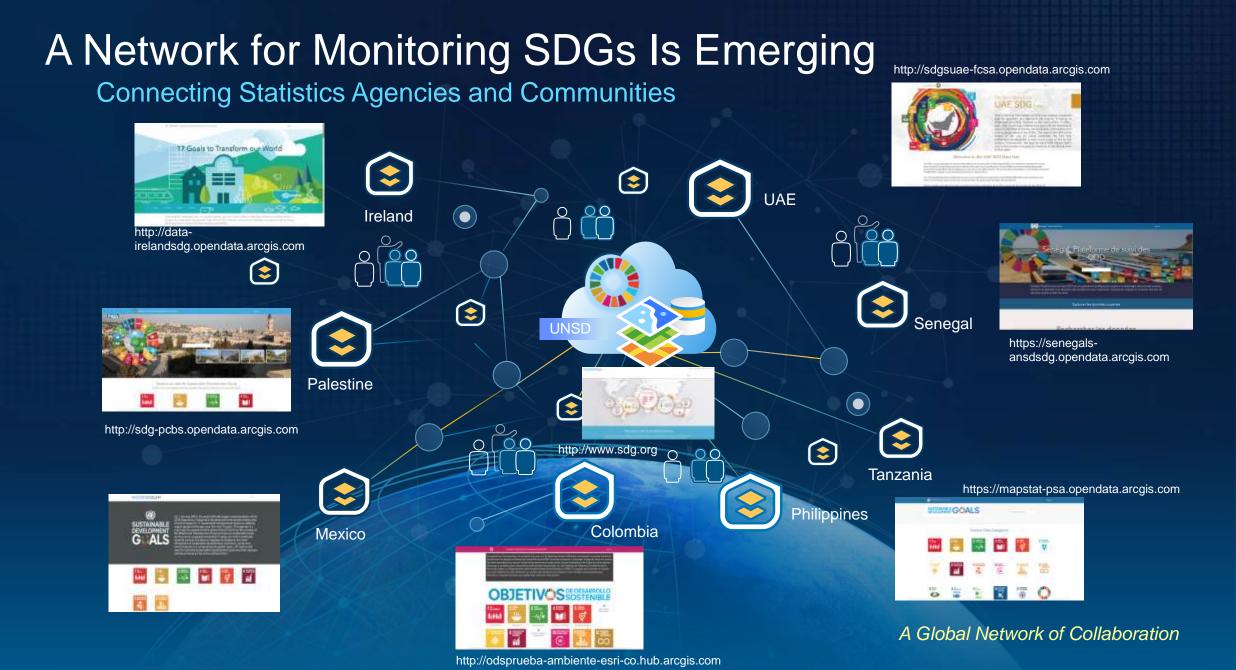
- Performance
- Scalability
- Resiliency
- Cloud Connectors
- Actuation

Sensors

Vehicles

Real-Time Environment Data

Enterprise Now SaaS Coming


Collapsing the Time from Measurement to Decision Making

Engaging and Interconnecting Communities

Bringing Together People, Organizations and Stakeholders

. . Collaborating Around Common Interests and Initiatives

Geospatial Infrastructure provides SDG monitoring at scale

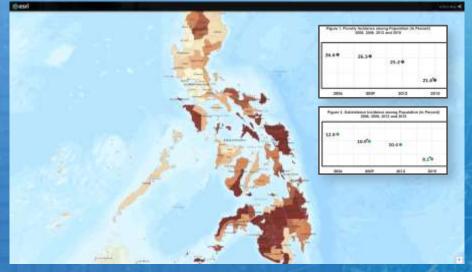
Enabling federated data management, and sharing best practices and advanced analytics

UNSD Federated Information System UN Big Data Global Working Group for the SDGs Palestine Philippines Mobile Phone Data Scanner Analytic Services Data Palestine Central Bureau **Philippine Statistics** </> </> </> </> </> </> </> </> </> of Statistics Authority Mexico **Big Data** Integration GWG Partner UN SDG Python **Open Science Tools** Hub Network Notebooks Instituto Nacional de Estadística y Geografía Ireland (INEGI) Social Media Big Data Data Spatial Analysis & UAE, Geoprocessing Central Statistics Office & Partner **Ordnance Survey Ireland** Publish ... Share Create **Federal Competitiveness &** A Global Network of Collaboration **Statistics Authority**

THE GLOBAL GOALS For Sustainable Development

Target Contribute to progress on the Target, not necessarily the Indicator										Goal	Indicator Direct measure or indirect support to the Indicator					
							1.4	1.5	1	No poverty	1.4.2					
						2.3	2.4	2.c	2	Zero hunger	2.4.1					
					3.3	3.4	3.9	3.d	3	Good health and well-being	3.9.1					
									4	Quality education						
								5.a	5	Gender equality	5.a.1					
		6.1	6.3	6.4	6.5	6.6	6.a	6.b	6	Clean water and sanitation	6.3.1	6.3.2	6.4.2	6.5,1	6.6.1	
					7.2	7.3	7.a	7.b		Affordable and clean energy	7.1.1					
								8.4	8	Decent work and economic growth						
					9.1	9.4	9.5	9.a	9	Industry, innovation and infrastructure	9.1.1	9.4.1				
						10.6	10.7	10.a	10	Reduced inequalities						
	11.1	11.3	11.4	11.5	11.6	11.7	11.b	11.c	11	Sustainable cities and communities	11.1.1	11.2.1	11.3.1	11.6.2	11.7.1	
				12.2	12.4	12.8	12.a	12.b	12	Responsible consumption and production	12.a.1					
					13.1	13.2	13.3	13.b	13	Climate action	13.1.1					
		14.1	14.2	14.3	14.4	14.6	14.7	14.a	14	Life below water	14.3.1	14.4.1	14.5.1			
	15.1	15.2	15.3	15.4	15.5	15.7	15.8	15.9	15	Life on land	15.1.1	15.2.1	15.3.1	15.4.1	15.4.2	
								16.8	16	Peace, justice and strong institutions						
17.2	17.3	17.6	17.7	17.8	17.9	17.16	17.17	17.18	17	Partnerships for the goals	17.6.1	17.18.1				

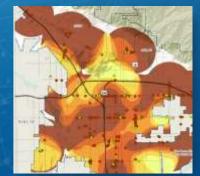
EARTH OBSERVATION AND GEOSPATIAL INFORMATION LINKAGES TO SDG GOALS, TARGETS AND INDICATORS



Population Below Poverty Line


Ireland

Poverty Incidence


Philippines

USA

Healthy Food Access

California

Food Supply

UN-Yemen

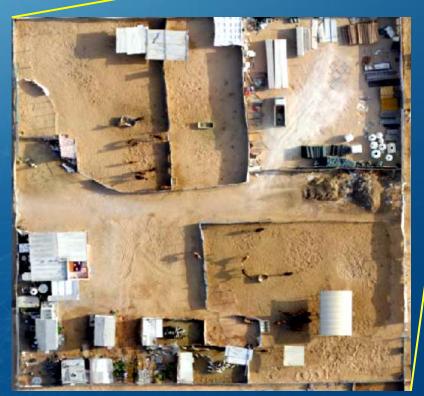
Malnutrition

World

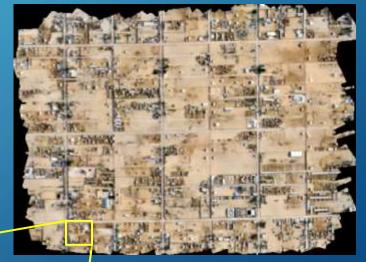
Precision Agriculture

New Zealand

Machine Learning using Drone Data

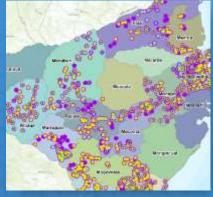

Captured images for two study areas

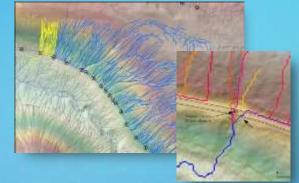
- Animal Farms
- Crop Farms


Use Esri Artificial Intelligence tools

- Multi-spectral image analysis
- Auto-detect features

Focus on-site inspections to farms that have regulatory issues


Animal Farms



Water and Sanitation Projects

Mozambique

Drainage Network Modeling

Sewer

Sanitation Cleanout

Locations

California

Water Monitoring

Los Angeles

Switzerland

Water Quality Monitoring

China


Work Order Management

Washington

New Jersey

Pipeline Alignment

Montana

Rooftop Solar Potential

Massachusetts

Solar and Wind Energy

Philippines

Solar Potential

Renewable Energy Connection Network

Southern California

Wind Farm Design

Bavaria, Germany

Wind Resources

Singapore

England

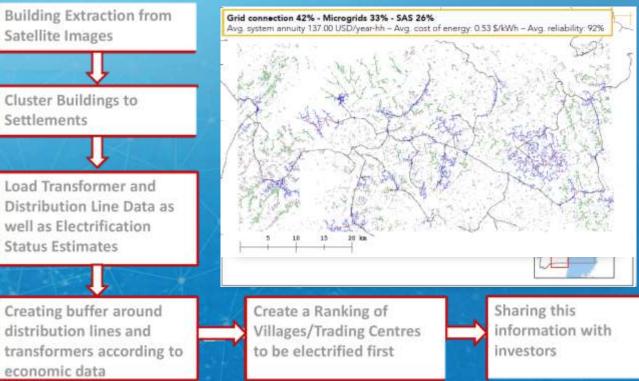
Renewable Energy Monitoring

China

Electricity Consumption per Capita:

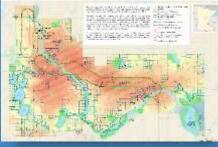
Uganda (2016): 71 kWh/Capita
Germany (2014): 7,035 kWh/Capita
EU (2014): 5,909 kWh/Capita
World (2014): 3,128 kWh/Capita

Goal:


Developing a GIS based decision support Model to decide whether it is more economical to electrify a village using Solar Home Systems, Mini-Grid or On-Grid Solutions

Energy Sector GIS Working Group Uganda Open Data Site

Facebook Population Data https://ciesin.columbia.edu/data/hrsl/



Electrification Planning in Uganda using Satellite Data

Solar Containers for rural communities

Urban Heat Islands

Minneapolis

Urban Planning

Abu Dhabi, UAE

Vertical Intensification

Zoning

California

Land Use

Miami-Dade

Switzerland

Greece

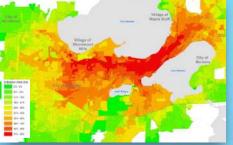
Honolulu

Recycling Communications

out any for lotter ta supported to the set at exclosion are the until mergers compact the train int mode to content of

interance costs are readying The solution proves to enturing associations, be Colt Sele Watto Service. incompart when the later we full entreety to be equiled. All to the

the appening on a differ Backbeigt in Lineau, o De


and a set of the set of the

point of the SAU Security in state and state or many

Walking and Transit Model

G BACK

stilled literative inter-

Wisconsin

Rail Status Monitoring

USA

Germany

Public Transit

Washington

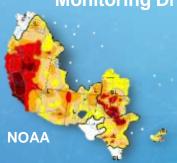
Postal Delivery

Los Angeles

Charlotte

13 CLIMATE ACTION

Glacial Melt



Monitoring Drought

South Carolina

San Francisco

Biomass Assessment

Africa

Groundwater

Change


Turkey

Forest Carbon Reserves

South America

Calculating First Ice Freeze

Forest Restoration

Wallowa-Whitman NF

Californi

LIFE BELOW WATER 14

Marine and **Terrestrial Habitat**

Abu Dhabi, UAE

Ecologically Significant Areas

NOAA—Monterey Bay

Ocean Modeling

Coral Communities

Martinique

Biodiversity

Philippines

NOAA

Marine Sanctuary

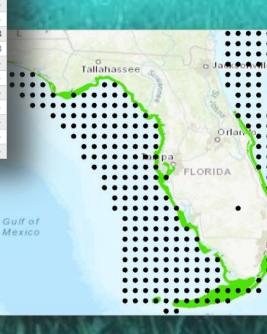
California

Reef Health

Cook Islands Protection Planning

Australia

Marine



Predicting Environmental Phenomena Where Seagrasses Grows, Empirical Bayesian Kriging (EBK), Random Forest classifier

Ⅲ EMU_Global_90m ×

Fie	ld: 📰 Add	🕎 Dele	te 🕎 Ca	lculate 9	Selection: 🛃 Zoom To 📑 Switch 🗐 Clear					
⊿	OBJECTID	SHAPE	pointid	temp	salinity	appO2ut	dissO2	nitrate	percO2sat	
	11	Point Z	24	-1.433144	34.18222	<null></null>	<null></null>	<null></null>	<null></null>	
	13	Point Z	26	-1.439945	34.17537	<null></null>	<null></null>	<null></null>	<null></null>	
	118	Point Z	307	-1.387401	34.32391	<null></null>	<null></null>	<null></null>	<null></null>	
	753	Point Z	1739	-1.600642	34.03786	1.110779	7.211782	22.96304	86.85204	
	754	Point Z	1740	-1.56238	34.02853	0.997919	7.310482	21.98382	88.18443	
	871	Point Z	2184	-1.619098	33.9525	<null></null>	<null></null>	<null></null>	<null></null>	
	872	Point Z	2185	-1.678768	33.97821	<null></null>	<null></null>	<null></null>	<null></null>	
	882	Point Z	2211	-1.616092	33.94105	<null></null>	<null></null>	<null></null>	<null></null>	
	884	Point Z	2219	-1.697907	33.92028	<null></null>	<null></null>	<null></null>	<null></null>	
	885	Point Z	2220	-1.68471	33.92426	<null></null>	<null></null>	<null></null>	<null></null>	
	886	Point Z	2221	-1.69101	33.94196	<null></null>	<null></null>	<null></null>	<null></null>	
	887	Point Z	2222	-1.69061	33.93676	<null></null>	<null></null>	<null></null>	<null></null>	

Empirical Bayesian Kriging

from sklearn.ensemble import RandomForestClassifier import numpy as NUM import arcpy as ARCPY import arcpy.da as DA import pandas as PD import seaborn as SEA import matplotlib.pyplot as PLOT import arcgisscripting as ARC import SSUtilities as UTILS import os as OS

Habitat Corridors

Atlanta

Wildlife Conservation

South Africa

Watershed

Wilderness Tour

Wildlife Imagery

Invasive Species

Steens Mountain Wilderness, Oregon

Ecosystem Sensitivity

New Jersey

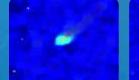
Green Infrastructure

Bolivia

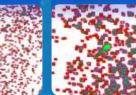
Habitat Monitoring

California

Using Deep Learning to Assess Palm Tree Health



Leaf Spots and Leaf Blights of Palm


Bud Rot of Palm

Graphiola Leaf Spot (False Smut) of Palm



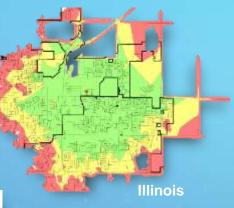
Image Classification to help Infer presence of contamination

Inferring presence of fungal & bacterial diseases using image classification enabling an immediate response to identify containment zones & to contain contaminations

• Benefits:

- Supervised Classification for autonomous systems
- Real-Time Detection & Accelerated Response

Fire Station Location/Allocation


Texas

EMS Resources

Tel Aviv, Israel

Fire Response Times

Marathon Viewshed

London, England

Protection

Acts of Terrorism Infrastructure

DHS

Violence Hot Spots

Syria

Officer Involved Shootings

Texas

Spatiotemporal Crime Patterns

Louisiana

16 PEACE AND JUSTICE STRONGINSTITUTIONS

City in Motion Geography-Wide

CRM Demographics, Visitor Lines

Analytics Home/Work Locations

Monitoring

Signaling Network Movement, Roaming

Data Packet Inspection DPI Web Activity 1 Billion Records Daily

